Россия в красках
 Россия   Святая Земля   Европа   Русское Зарубежье   История России   Архивы   Журнал   О нас 
  Новости  |  Ссылки  |  Гостевая книга  |  Карта сайта  |     

ПАЛОМНИКАМ И ТУРИСТАМ
НАШИ ВИДЕОПРОЕКТЫ
Святая Земля. Река Иордан. От устья до истоков. Часть 2-я
Святая Земля. Река Иордан. От устья до истоков. Часть 1-я
Святая Земля и Библия. Часть 3-я. Формирование образа Святой Земли в Библии
Святая Земля и Библия. Часть 2-я. Переводы Библии и археология
Святая Земля и Библия. Часть 1-я Предисловие
Рекомендуем
Новости сайта:
Новые материалы
Павел Густерин (Россия). Взятие Берлина в 1760 году.
Документальный фильм «Святая Земля и Библия. Исцеления в Новом Завете» Павла и Ларисы Платоновых  принял участие в 3-й Международной конференции «Церковь и медицина: действенные ответы на вызовы времени» (30 сент. - 2 окт. 2020)
Павел Густерин (Россия). Памяти миротворца майора Бударина
Оксана Бабенко (Россия). О судьбе ИНИОН РАН
Павел Густерин (Россия). Советско-иракские отношения в контексте Версальской системы миропорядка
 
 
 
Ксения Кривошеина (Франция). Возвращение матери Марии (Скобцовой) в Крым
 
 
Ксения Лученко (Россия). Никому не нужный царь

Протоиерей Георгий Митрофанов. (Россия). «Мы жили без Христа целый век. Я хочу, чтобы это прекратилось»
 
 
 
 
Кирилл Александров (Россия). Почему белые не спасли царскую семью
 
 
Владимир Кружков (Россия). Русский посол в Вене Д.М. Голицын: дипломат-благотворитель 
Протоиерей Георгий Митрофанов (Россия). Мы подходим к мощам со страхом шаманиста
Борис Колымагин (Россия). Тепло церковного зарубежья
Нина Кривошеина (Франция). Четыре трети нашей жизни. Воспоминания
Протоиерей Георгий Митрофанов (Россия). "Не ищите в кино правды о святых" 
Протоиерей Георгий Митрофанов (Россия). «Мы упустили созидание нашей Церкви»
Популярная рубрика

Проекты ПНПО "Россия в красках":
Публикации из архивов:
Раритетный сборник стихов из архивов "России в красках". С. Пономарев. Из Палестинских впечатлений 1873-74 гг.

Мы на Fasebook

Почтовый ящик интернет-портала "Россия в красках"
Наш сайт о паломничестве на Святую Землю
Православный поклонник на Святой Земле. Святая Земля и паломничество: история и современность
 
Ляпунов Александр Михайлович
 
      Ляпунов Александр Михайлович [25.5(6.6).1857, Ярославль, — 3.11.1918, Одесса], русский математик и механик, академик Петербургской АН (1901; член-корреспондент 1900). Ученик П.Л. Чебышева. В 1880 окончил Петербургский университет. С 1885 доцент, с 1892 профессор Харьковского университета; с 1902 работал в Петербургской АН. Ляпунов создал современную строгую теорию устойчивости равновесия и движения механических систем, определяемых конечным числом параметров. С математической стороны этот вопрос сводится к исследованию предельного поведения решений систем обыкновенных дифференциальных уравнений при стремлении независимого переменного к бесконечности. Устойчивость определялась Ляпуновым по отношению к возмущениям начальных данных движения. До работ Ляпунова вопросы об устойчивости обычно решались по первому приближению, то есть путём отбрасывания всех нелинейных членов уравнений, причём не выяснялась законность такой линеаризации уравнений движения.
     
     Выдающаяся заслуга Александра Михайловича  — построение общего метода для решения задач об устойчивости; основной труд — докторская диссертация «Общая задача об устойчивости движения» (1892). В этой работе даётся строгое определение основных понятий теории устойчивости, указываются случаи, когда рассмотрение линейных уравнений первого приближения даёт решение вопроса об устойчивости, и проводится подробное исследование некоторых важных случаев, когда первое приближение не даёт ответа на этот вопрос. Диссертация и последующие работы в рассматриваемой области содержат целый ряд фундаментальных результатов в теории обыкновенных дифференциальных уравнений как линейных, так и нелинейных.
     
      Большой цикл исследований Ляпунова посвящен теории фигур равновесия равномерно вращающейся жидкости, частицы которой взаимно притягиваются по закону всемирного тяготения. До него были установлены для однородной жидкости эллипсоидальные фигуры равновесия. Александр Михайлович впервые доказал существование фигур равновесия однородной и слабо неоднородной жидкости, близких к эллипсоидальным. Он установил, что от некоторых эллипсоидальных фигур равновесия ответвляются близкие к ним неэллипсоидальные фигуры равновесия однородной жидкости, а от других эллипсоидальных фигур равновесия ответвляются фигуры равновесия слабо неоднородной жидкости. Ляпунов разрешил также задачу, предложенную ему ещё в начале его научной деятельности П.Л. Чебышевым, о возможности ответвления от эллипсоидальной фигуры равновесия с наибольшей (возможной для эллипсоидов) угловой скоростью неэллипсоидальных фигур равновесия. Ответ получился отрицательным. Ляпунов впервые строго доказал существование близких к сфере фигур равновесия медленно вращающейся неоднородной жидкости при весьма общих предположениях об изменении плотности с глубиной. 
 
     Александр Михайлович занимался также исследованием устойчивости как эллипсоидальных фигур, так и открытых им новых фигур для случая однородной жидкости. Сама постановка вопроса об устойчивости для сплошной среды (жидкость) до его работ была неясной. Он впервые строго поставил вопрос и с помощью тонкого математического анализа провёл исследование устойчивости фигур равновесия. В частности, он доказал неустойчивость так называемых грушевидных фигур равновесия и тем самым опроверг противоположное утверждение английского астронома Дж. Дарвина. Цикл работ Ляпунова по фигурам равновесия вращающейся жидкости и устойчивости этих фигур занимает центральное место во всей теории фигур равновесия.
     
      Небольшим по объёму, но весьма важным для дальнейшего развития науки был цикл работ по некоторым вопросам математической физики. Среди работ цикла основное значение имеет его труд «О некоторых вопросах, связанных с задачей Дирихле» (1898). Эта работа основана на исследовании свойств потенциала от зарядов и диполей, непрерывно распределённых по некоторой поверхности. Наиболее существенно исследование так называемого потенциала двойного слоя (случай диполей). Далее Александр Михайлович получил важные результаты, касающиеся поведения производных решения задачи Дирихле (см. Гармонические функции) при приближении к поверхности, на которой задано граничное условие. На этой основе им впервые были доказаны симметрия функции Грина для задачи Дирихле и формула, дающая решение задачи в виде интеграла по поверхности от произведения функции, входящей в граничное условие, на нормальную производную функции Грина. При всех этих условиях Ляпунов налагает на граничную поверхность некоторые ограничения; поверхности, удовлетворяющие им, называются теперь поверхностями Ляпунова 
      
      В теории вероятностей Александр Михайлович предложил новый метод исследования (метод «характеристических функций»), замечательный по своей общности и плодотворности; обобщая исследования П.Л. Чебышева и А.А. Маркова (старшего), Ляпунов доказал так называемую центральную предельную теорему теории вероятностей при значительно более общих условиях, чем его предшественники.
 
Источник Русская Цивилизация
 

[версия для печати]
 
  © 2004 – 2015 Educational Orthodox Society «Russia in colors» in Jerusalem
Копирование материалов сайта разрешено только для некоммерческого использования с указанием активной ссылки на конкретную страницу. В остальных случаях необходимо письменное разрешение редакции: ricolor1@gmail.com